Morita equivalence of dual operator algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Morita Type Equivalence for Dual Operator Algebras

We generalize the main theorem of Rieffel for Morita equivalence of W -algebras to the case of unital dual operator algebras: two unital dual operator algebras A,B have completely isometric normal representations α, β such that α(A) = [Mβ(B)M] ∗ and β(B) = [Mα(A)M] ∗ for a ternary ring of operators M (i.e. a linear space M such that MMM ⊂ M) if and only if there exists an equivalence functor F ...

متن کامل

A Morita Theorem for Dual Operator Algebras

We prove that two dual operator algebras are weak Morita equivalent in the sense of [4] if and only if they have equivalent categories of dual operator modules via completely contractive functors which are also weakcontinuous on appropriate morphism spaces. Moreover, in a fashion similar to the operator algebra case we can characterize such functors as the module normal Haagerup tensor product ...

متن کامل

Morita Equivalence of Brandt Semigroup Algebras

We prove that for every group G and any two sets I, J , the Brandt semigroup algebras l(B(I,G)) and l(B(J,G)) are Morita equivalent with respect to the Morita theory of selfinduced Banach algebras introduced by Grønbæk. As applications, we show that if G is an amenable group, then for a wide class of Banach l(B(I,G))-bimodules E, and every n > 0, the bounded Hochschild cohomology groups H(l(B(I...

متن کامل

Morita equivalence for cyclotomic BMW algebras

Article history: Received 7 March 2013 Available online xxxx Communicated by Changchang Xi

متن کامل

Functoriality and Morita Equivalence of Operator Algebras and Poisson Manifolds Associated to Groupoids *

It is well known that a measured groupoid G defines a von Neu-mann algebra W * (G), and that a Lie groupoid G canonically defines both a C *-algebra C * (G) and a Poisson manifold A * (G). We show that the maps (G) are functorial with respect to suitable categories. In these categories Morita equivalence is isomorphism of objects, so that these maps preserve Morita equivalence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2008

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2008.03.010